Summer growth rates and annual yields of perennial ryegrass (Lolium perenne L.) in the Upper North Island are expected to decline as a result of climate change
DOI:
https://doi.org/10.33584/jnzg.2022.84.3565Abstract
Evaluating the ability of perennial ryegrass to continue underpinning New Zealand’s low-cost dairy production systems under future climate change scenarios requires a modelling approach. In this study, climate projections for different climate change scenarios were used in the BASGRA pasture model to predict changes in annual yields and seasonal pasture growth rate patterns of perennial ryegrass. These predictions, including uncertainty, were made for the years 2010-2014, 2040- 2044 and 2090-2094 in 14 dairy-dominant subregions in the Upper North Island of New Zealand. The suitability of perennial ryegrass is expected to decline in the future across all subregions, with worse outcomes expected under higher atmospheric greenhouse gas levels. Winter is expected to be the season least affected by climate change and summer the most affected. Late-winter/spring is predicted to become the main growing season, followed by late-autumn/early-winter. The ability of
farmers to adapt their farming practices is essential in remaining profitable and internationally competitive.
Downloads
Downloads
Published
How to Cite
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
This work is licensed under a Creative Commons Attribution-Non Commercial-NoDerivatives 4.0 International License. Rights granted to the New Zealand Grassland Association through this agreement are non-exclusive. You are free to publish the work(s) elsewhere and no ownership is assumed by the NZGA when storing or curating an electronic version of the work(s). The author(s) will receive no monetary return from the Association for the use of material contained in the manuscript. If I am one of several co-authors, I hereby confirm that I am authorized by my co-authors to grant this Licence as their agent on their behalf. For the avoidance of doubt, this includes the rights to supply the article in electronic and online forms and systems.